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ABSTRACT: The sulfuration reaction of 2-(2-iodobenzoyl) | N Cu(OAC),, TEMED piff X
substituted, or 2-(2-iodobenzyl) substituted 1,2,34-tetrahydroiso- i k/ AN
quinolines with potassium sulfide proceeded in the presence of by S ——
copper catalysts to give tetrahydroisoquinoline-fused 1,3-benzothia- | Y = CH, or =0 M

zine scaffolds in moderate to appropriate yields. This protocol 2 XN
provided an efficient and simple strategy to construct the R?
corresponding benzothiazine derivatives via formation of C(sp®)—

S bond and C(sp®)—S bond, which the C—S bonds formed via different routes in this reaction (traditional cross-coupling
reaction via the cleavage of C—I bond and oxidative cross-coupling reaction via C(sp*)—H bond functionalization).

D evelopment of straightforward and efficient methods for Scheme 1. Selected Approaches to Ring-fused 1,3-

rapid construct to nitrogen and sulfur-containing Benzothiazine
heterocyc}i_cscompounds is one of the central focuses in organic Lombardino et al. (1961):
synthesis, as well as applications in the pharmaceutical MeO
industry® and materials science.’ 1,3-Benzothiazines®™ and HOOC m 0
1,2,3,4-tetrahydroisoquinolines (THIQs),"”"" in particular, are ji:@ e MeO )
the core structural motifs of many biologically and N HS PhH S

pharmaceutically active molecules. Remarkably, 5,6-

dihydrobenzo[5,6][1,3]thiazino[2,3-a]isoquinolin-8(13aH)- Seidel etal. (2014):
one and $,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]- (j\/?
AcOH

OHC
isoquinoline, which contain THIQ and 1,3-benzothiazine EEG . @
skeletons, are present as a key functlonal group in NH HS 3AMS
pharmacologically active compounds.'” They have been PhMe, 60 °C
investigated as sedatives (e.g, A, Figure 1), cell growth This work:
Cu(OAc),, TEMED N.
HCO my v OKS %Ej\/? Y )
N. O I NMP, Air S
HsCO
s Y = CH, or C=0
0] 13,14 .
sedatives (A) cell growth inhibitors (B) 1) and (2) redox-neutral a-sulfenylation of secondary

amine with thiosalicylaldehydes (Scheme 1, eq 2)."° These
Figure 1. Examples of bioactive THIQ-fused 1,3-benzothiazines. reported routes are useful and interesting for the synthesis of
ring-fused 1,3- benzothiazines. However, the sulfuration
reagents of functional thiols have unpleasant odors, preparation
difficulties, and easy oxidation during their entire processes,
which impedes their applications. Recently, our group
discovered that inorganic metal sulfides as a good coupling

inhibitors (e.g, B, Figure 1)."** As a result, the design and
development of a novel and straightforward route for the
generation of isoquinoline-fused 1,3-benzothiazines are partic-
ularly valuable.

Conventional synthetic approaches for the construction of

ring-fused 1,3-thiazine scaffolds focus on (1) direct imine Received: December 7, 2016
acylation reaction of imines with thiosalicylic acid (Scheme 1, Published: January 25, 2017
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partner could be used to synthesize the five-members sulfur-
containing heterocyclic compounds,'®™*" which are with the
characteristics of low toxicity, low cost, readily available, relative
stability, and operational simplicity. In continuation of our
efforts on the synthesis of sulfur-containing compounds using
simple and low-cost methods, we decided to explore the
synthesis of six-members sulfur-containing heterocyclic com-
pounds. We found that 2-(2-iodobenzoyl) substituted, or 2-(2-
iodobenzyl) substituted THIQs could efficiently react with
potassium sulfide to obtain isoquinoline-fused 1,3-benzothia-
zines in the presence of copper catalyst (Scheme 1, eq 3).
Herein, we would introduced the details for constructing these
N,S-heterocycles.

The initial evaluation was carried out with (3,4-dihydroiso-
quinolin-2(1H)-yl) (2-iodophenyl)methanone (1a) and K,S as
the model substrates to optimize the reaction conditions, and
the results were summarized in Table 1. To our delight, the

Table 1. Optimization of Reaction Conditions”

o . [Cu/TEMEDA N 0
2 .
| NMP, Air S
1a 2a
entry catalyst M,S temp(°C)” yield(%)
1 CuBr & 120 70
2 CuBr K,S 120 37
34 CuBr K,S 120 S8
4 K,S 120 NR®
5 Cu(OAc), K,S 120 88
6 Cu(OAc), K,S 100 41
7 Cu(OAc), K,S 140 58
8 Cu(OAc), Na,S 120 trace
9 Cu(OAc), Li,S 120 trace

“Reaction conditions: 1a (0.3 mmol), M,S (0.9 mmol), Cu salt (20
mol%), TEMEDA (40 mol%), NMP (2 mL), under air atmosphere in
sealed Schlenk tube, at 120 °C for 24 h. Temp temperature. “‘Under
nitrogen atmosphere. 4Under oxygen atmosphere. °NR: no reaction.

desired product 2a was obtained in 70% yield by employing
CuBr as catalyst and TEMED (tetramethylethylenediamine) as
ligand in NMP (N-methyl-2-pyrrolidone) at 120 °C under air
atmosphere (entry 1). When the reaction was performed under
oxygen atmosphere or nitrogen atmosphere, the yields of
product 2a are all decreased obviously (entries 2 and 3).
Control experiment revealed that the use of copper salt was
imperative (entry 4). In order to achieve the best result, a series
of copper catalysts and nitrogen-ligands are screened (entry S,
see the Supporting Information for more details). Among the
comparison of copper catalysts, monovalent copper salts
(CuCl, Cul, Cu,0) were inferior to bivalent copper salts
(CuF,, CuCl,, CuBr,, Cu(OAc),, Cu(OTf),), and Cu(OAc),
showed the best catalytic efficiency. No ligand and the other
ligands, such as DMEDA (N,N’-dimethylethylenediamine), L-
proline, DMAP (4-dimethylaminopyridine), and 1,10-phenan-
throline, all gave lower yields than TEMED. Subsequently,
several polar solvents (dimethylformamide, dimethyl sulfoxide,
dimethylacetamide, and acetonitrile) were evaluated as
potential alternatives to NMP, but the desired product all
gave rise in lower yields (see the Supporting Information for
more details). Finally, it is found that both decreasing and
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increasing the temperature could not improve the yields
(entries 6 and 7). In order to improve the yield, the other metal
sulfides, such as Na,S and Li,S, were used to displace K,S.
Regrettably, they are not efficient sulfur reagents for the
reaction, and no product 2a was obtained under the identical
conditions (entries 8 and 9). Thus, the use of 20 mol% of
Cu(OAc), and 40 mol% of TEMED, in NMP at 120 °C for 24
h was found to be optimal reaction conditions (88%, entry S).

With the optimal reaction conditions in hand, the scope of
the substituents on the aromatic ring of 2-iodobenzoyl group
was tested initially (Scheme 2, 2b—2h). Both electron-donating

Scheme 2. Synthesis of 5,6-
Dihydrobenzo[5,6][1,3]thiazino[2,3-a]isoquinolin-
8(13aH)-ones”

(0 ®
Cu(OAc),
) ANANO TEMED & NN 2O
I~ * KS TP, AIr s A
< 120°C \|
1 \RZ 2 \R2
S S S
HaC jI/ 5
2b 93% 2c 74% CHs 2d 69% OCH;
N0 N o
OCHj o
2e 46% OCH, 2f 46% 2g 68%
HsCO HsCO
O Hyco o
2h 53% CF, 85% 2j 54%
H3CO
HsCO E E
2k 85% HsC 2a 18%°

“Reaction conditions: 1 (0.3 mmol), K,S (0.9 mmol), Cu(OAc), (20
mol%), TEMED (40 mol%), NMP (2 mL), under air atmosphere in
sealed Schlenk tube, at 120 ° C for 24 h. “(2-Bromophenyl)(3,4-
dihydroisoquinolin-2(1H)-yl)methanone was applied.

groups (CH; and OCHj,) and electron-withdrawing groups (F,
Cl, and CF,;) were tolerated, and could smoothly transform into
the desired isoquinoline-fused 1,3-benzothiazines under the
optimized conditions. For example, the N,S-heterocycle 2b was
afforded in 93% yield. Due to the biological activity of bearing
of methoxyl group on the isoquinoline-fused 1,3-benzothia-
zines, the methoxyl group on the isoquinoline ring were
evaluated (Scheme 2, 2i—2k). Luckily, the desired products 2i
and 2k all were obtained in 85% yield. Importantly, the
isoquinoline-fused 1,3-benzothiazine 2j could be gained in 54%
yield which has been investigated as sedatives. Finally, the
reactivity of (2-bromophenyl)(3,4-dihydroisoquinolin-2(1H)-
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yl)methanone was investigated (Scheme 2, 2a). Unfortunately,
it could not efficiently react with K,S, and low yield of product
2a was afforded in the standard reaction conditions.
Encouraged by the success in the coupling reaction of (3,4-
dihydroisoquinolin-2(1H)-yl)(2-iodophenyl)methanones 1
with K,S, we next attempted to examine the substrate scope
to 2-(2-iodobenzyl)-THIQs 3 (Scheme 3). However, it

Scheme 3. Synthesis of 5,6,8,13a-
Tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]isoquinolines”

[ B
P> N Cu(OAc),
R TEMED /& NN
| + Ks—— R
| NMP, Air S =
80°C |
XN N
R? 4 g
H3CO H300

OzN
4d 90% 4e 62% 4f 66% COOEt
30: } 1
4g 62% 4h 60% OCH,

“Reaction conditions: 3 (0.3 mmol), K,S (0.9 mmol), Cu(OAc), (20
mol %), TEMED (40 mol%), NMP (2 mL), under air atmosphere in
sealed Schlenk tube, at 80 °C for 4 h.

revealed that the reaction of 2-(2-iodobenzyl)-THIQ 3a with
potassium sulfide is sluggish under the standard conditions.
Fortunately, 3a was found to be a suitable substrate and
achieved isoquinoline-fused 1,3-benzothiazines in 90% yield,
when the reaction temperature was lowered to 80 °C.
Subsequently, the electronic effect of the substituents on the
aromatic ring of isoquinoline was investigated. We were pleased
to find that the reactions of isoquinoline bearing both electron-
donating groups and electron-withdrawing groups worked well
and afforded the corresponding products in good yields
(Schemes 3 and 4b—d). Among them, the products 4b and
4c were both attained in 89% yields. To our delight, electron-
withdrawing group NO, of isoquinoline ring system gave
compound 4d in 90% vyield. Finally, a wide range of 2-
iodobenzyl-substituted THIQs were examined. It was observed
that bearing either electron-donating groups (CH,;, OCH;) or
electron-withdrawing groups (F, COOEt) on the phenyl ring of
3 proceeded smoothly, and obtained the desired products 4 in
60—66% yields (Schemes 3 and 4e—h).

Based on the reported literatures"*>** and previous works, a
plausible mechanism of this coupling reaction was proposed in
Scheme 4. First, intermediate A is formed from (3,4-
dihydroisoquinolin-2(1H)-yl)(2-iodophenyl)methanone 1la
and K,S via the copper-catalyzed traditional coupling reaction.
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Scheme 4. Possible Reaction Mechanism
Cu( OAc)z
_TEMED _
NMP,air
120°C

KeS TEMEDA

Subsequently, the intermediate A undergoes a copper-
promoted single-electron transfer process to provide the
iminjum intermediate B, which can effectively undergo an
intramolecular nucleophilic attack to give the desired cross-
coupling product 2a.

In conclusion, we have developed an efficient and
straightforward method for the synthesis of isoquinoline-fused
1,3-benzothiazines via copper-catalyzed cross-coupling of 2-(2-
iodobenzoyl) substituted, or 2-(2-iodobenzyl) substituted
1,2,3,4-THIQs with potassium sulfide. The main features of
this new methodology are (1) this reaction provides an efficient
protocol for the construction C(sp®)-S bond and C(sp*)-S
bond in a step; (2) the low cost, low toxicity, odorless, and
readily available potassium sulfide should be desired sulfuration
reagent for the coupling partner; and (3) the isoquinoline-fused
1,3-benzothiazine derivatives have biological and pharmaceut-
ical activity, which are easily prepared using this synthetic
strategy.

B EXPERIMENTAL SECTION

General Information. NMR spectra of the products 2a—2k, 4a—
4h were recorded using 500 MHz NMR spectrometer. The chemical
shifts were calibrated to TMS (*H NMR spectra) and CD(H)Cl, (**C
NMR spectra) as the internal reference (0.00 ppm for 'H NMR
spectra and 77.00 ppm for *C NMR spectra). High-resolution mass
spectra (HRMS) were recorded with an ESI-Obitrap mass
spectrometer. Reactions were monitored by thin-layer chromatog-
raphy, and column chromatography (petroleum ether/ethyl acetate)
was performed on silica gel (200—300 mesh). All reagents were used
without further purification as received from commercial suppliers
unless otherwise noted. All solvents were dried and distilled prior to
use according to the standard protocols.

General Procedure for the Preparation of Starting Materials
(1). A solution sodium nitrite (703.8 mg, 10.2 mmol) in water (2 mL)
was added slowly to a cold (0 °C) stirred solution of substituted 2-
aminobenzoic acid (10 mmol) in water (25 mL) and concentrated
hydrochloric acid (7.5 mL). On completion of the addition the
solution was stirred for 5—10 min until complete consumption of
starting material was indicated by TLC. Then, a solution of the
potassium iodide (16932 mg, 10.2 mmol) in water (2.5 mL) was
slowly added. The cooling bath was removed and the mixture stirred
for a further 30 min before carefully heating the suspension to 90 °C
for 30 min. The mixture was cooled to room temperature and the
precipitated solid was collected and washed with water. The crude
product was recrystallized from ethanol and water to afford the pure
substituted-2-iodobenzoic acids.

The substituted-2-iodobenzoic acids (3 mmol), thionyl chloride
(3.0 mL), and one drop of N,N-dimethylformamide were heated under
reflux for 4 h. The mixture was cooled to room temperature. The
excess thionyl chloride was removed from the cooled reaction mixture
and the remaining acid chloride was dissolved in dichloromethane.

DOI: 10.1021/acs.joc.6b02943
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A solution o-iodoebenzoyl chlorides (3 mmol) in CH,Cl, (3 mL)
was added slowly to a cold (0 °C) stirred solution of isoquinoline (2.5
mmol) and triethylamine (0.84 mL, 6 mmol) in dichloromethane (§
mL). The mixture was stirred until complete consumption of starting
material was indicated by TLC. The mixture was quenched with water
and the organic layer extracted with dichloromethane. The combined
extracts were washed with brine, dried over Na,SO,, concentrated
under reduced pressure, and purified by column chromatography to
afford the pure product 1.

Typical Experimental Procedure for the Synthesis of 5,6-
Dihydrobenzol[5,6][1,3]thiazino[2,3-alisoquinolin-8(13aH)-
ones (Scheme 2). The sealed Schlenk tube was charged with (3,4
dihydroisoquinolin-2(1H)-yl)(2-iodophenyl)methanone derivatives 1
(0.3 mmol), K,S (99 mg, 3 equiv, 0.9 mmol), Cu(OAc), (10.9 mg, 20
mol%, 0.06 mmol), TEMED (13.9 mg, 40 mol%, 0.12 mmol), and
NMP (2 mL). Then the mixture was stirred at 120 °C (oil bath
temperature). After the reaction was finished, the reaction mixture was
cooled to room temperature, quenched by water, and extracted with
ethyl acetate. The combined organic layer was washed with brine, and
dried over Na,SO,, and concentrated in vacuum, and the resulting
residue was purified by silica gel column chromatography (petroleum
ether/ethyl acetate) to afford ring-fused 1,3-benzothiazine heterocycles
2

Typical Experimental Procedure for the Synthesis of
5,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-al-
isoquinolines (Scheme 3). The sealed Schlenk tube was charged
with 2-(2-iodobenzyl)-1,2,3,4-tetrahydroisoquinoline derivatives 3 (0.3
mmol), K,S (99 mg, 3equiv, 0.9 mmol), Cu(OAc), (10.9 mg, 20 mol
%, 0.06 mmol), TEMED (13.9 mg, 40 mol%, 0.12 mmol), and NMP
(2 mL). Then the mixture was stirred at 80 °C for 4 h (oil bath
temperature). After the reaction was finished, the reaction mixture was
cooled to room temperature, quenched by water, and extracted with
ethyl acetate. The combined organic layer was washed with brine, and
dried over Na,SO,, and concentrated in vacuum, and the resulting
residue was purified by silica gel column chromatography (petroleum
ether/ethyl acetate) to afford ring-fused 1,3-benzothiazine heterocycles
4.

5,6- Dlhydrobenzo[S 6][1, 3]thlazmo[2 3-alisoquinolin-8(13aH)-
one (2a):""" White solid (70 mg, 88%); 'H NMR (CDCl,, 500 MHz)
§2.92-2.96 (m, 1H), 3.11-3.22 (m, 2H), 4.78—4.81 (m, 1H), 6.22 (s,
1H), 7.24-7.26 (m, 1H), 7.29-7.34 (m, 4H), 7.38—7.42 (m, 2H),
8.19 (d, J = 8.0 Hz, 1H). ®C{H} NMR (CDCl,, 125 MHz) § 29.4,
39.8, 60.5, 126.1, 126.8, 127.1, 127.5, 128.4, 128.7, 128.9, 130.6, 131.0
131.7, 136.2, 137.6, 164.8.

12-Methyl-5,6-dihydrobenzo(5,6][1,3]thiazino[2,3-aJisoquinolin-
8(13aH)-one (2b). Pale yellow solid (78 mg, 93%); mp: 79.9—81.3 °C;
'"H NMR (CDCl,;, 500 MHz) § 2.33 (s, 3H), 2.94 (d, J = 14.5 Hg,
1H), 3.11-3.22 (m, 2H), 4.77—4.80 (m, 1H), 6.13 (s, 1H), 7.20—7.31
(m, SH), 7.41 (t, ] = 5.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H). *C{H}
NMR (CDCl,, 125 MHz) § 19.8, 29.4, 39.7, 59.8, 125.3, 127.0, 127.6,
1284, 128.6, 128.7, 128.9, 130.8, 132.8, 134.6, 136.3, 1374, 165.1.
HRMS (ESI, m/z) caled for [C,,H;sNOSJH": 282.0947; found
282.0942.

11-Methyl-5,6-dihydrobenzo(5,6][1,3]thiazino[2,3-aJisoquinolin-
8(13aH)-one (2c). Pale yellow oil (62 mg, 74%); '"H NMR (CDCL,,
500 MHz) 6§ 2.37 (s, 3H), 2.90—2.94 (m, 1H), 3.09—3.20 (m, 2H),
476-4.79 (m, 1H), 6.20 (s, 1H), 7.12 (t, ] = 8.0 Hz, 2H), 7.23-7.25
(m, 1H), 7.28 (t, ] = 4.5 Hz, 2H), 7.36—7.38 (m, 1H), 8.07 (d, ] = 8.0
Hz, 1H). BC{H} NMR (CDCl,, 125 MHz) & 21.3, 29.4, 39.7, 60.4,
126.3, 127.0, 127.1, 127.2, 127.5, 1283, 128.6, 130.7, 1309, 136.2,
137.4, 142.4, 164.8. HRMS (ESI, m/z) calcd for [C;,H;sNOS]H":
282.0947; found 282.0943.

11-Methoxy-5,6-dihydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinolin-8(13aH)-one (2d). Pale yellow solid (60 mg, 69%); mp:
142.3—143.8 °C; '"H NMR (CDCl,, 500 MHz) & 2.90—2.93 (m, 1H),
3.08—3.19 (m, 2H), 3.84 (s, 3H), 4.74—4.77 (m, 1H), 6.23 (s, 1H),
6.79—6.84 (m, 2H), 7.23—7.25 (m, 1H), 7.29 (t, ] = 4.5 Hz, 2H),
7.36—7.38 (m, 1H), 8.12 (d, ] = 9.0 Hz, 1H). “C{H} NMR (CDCl,,
125 MHz) & 29.4, 39.6, 55.4, 60.5, 110.8, 112.8, 121.7, 127.0, 127.5,
128.3, 128.6, 130.6, 132.8, 1362, 139.4, 161.9, 164.7. HRMS (ESL, m/
z) caled for [C,H;sNO,S]H*: 298.0896; found 298.0896.
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10,11-Dimethoxy-5,6-dihydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinolin-8(13aH)-one (2e). Yellow oil (45 mg, 46%); 'H NMR
(CDCl,;, 500 MHz) 6 2.92—2.97 (m, 1H), 3.10—3.20 (m, 2H), 3.91 (s,
3H), 3.95 (s, 3H), 4.75—4.79 (m, 1H), 6.20 (s, 1H), 6.76 (s, 1H), 7.25
(t, J = 3.5 Hz, 1H), 7.30 (t, ] = 5.0 Hz, 2H), 7.39 (t, ] = 5.5 Hz, 1H),
7.69 (s, 1H). BC{H} NMR (CDCl,, 125 MHz) § 29.4, 39.7, 56.0,
56.1, 60.8, 108.7, 112.9, 121.4, 127.0, 127.5, 128.3, 128.7, 130.3, 130.7,
136.2, 147.7, 151.9, 164.8. HRMS (ESI, m/z) calcd for
[CsH,NO;STH": 328.1002; found 328.1001.

10-Fluoro-5,6-dihydrobenzo[5,6][1 3]thlazmo[2 3-ajisoquinolin-
8(13aH)-one (2f). Yellow oil (40 mg, 46%); 'H NMR (CDCl,, 500
MHz) § 2.92—2.96 (m, 1H), 3.10—3.24 (m, 2H), 4.76—4.80 (m, 1H),
620 (s, 1H), 7.14 (td, ] = 8.5 Hz, 2.5 Hz, 1H), 7.25-7.27 (m, 1H),
7.29—7.33 (m, 3H), 7.38—7.40 (m, 1H), 7.89 (dd, ] = 9.5 Hz, 3.0 Hz,
1H). BC{H} NMR (CDCl,, 125 MHz) § 29.4, 40.0, 60.7, 117.6 (d, J
=23.5 Hz), 119.3 (d, ] = 22.6 Hz), 127.2, 127.6, 128.4 (d, ] = 7.2 Hz),
128.5, 128.8, 130.3, 130.6 (d, J = 7.2 Hz), 132.7 (d, ] = 3.2 Hz), 136.1,
1612 (d, J = 244.7 Hz), 163.8. HRMS (ESI, m/z) caled for
[C,¢H,,NOSF]H": 286.0696; found 286.0697.

10-Chloro-5,6-dihydrobenzo[5,6][1,3]thiazino[2,3-aJisoquinolin-
8(13aH)-one (2g). Yellow oil (60 mg, 68%); '"H NMR (CDCl,, 500
MHz) § 2.91-2.95 (m, 1H), 3.09—3.22 (m, 2H), 4.74—4.78 (m, 1H),
6.19 (s, 1H), 7.24—7.27 (m, 2H), 7.29-7.31 (m, 2H), 7.35—7.38 (m,
2H), 8.15 (d, J = 2.5 Hz, 1H). ¥C{H} NMR (CDCl,, 125 MHz) §
29.3, 39.9, 60.5, 127.2, 127.5, 128.0, 128.5, 128.7, 130.1, 130.2, 130.8,
131.7, 132.1, 135.9, 136.1, 163.6. HRMS (ESI, m/z) caled for
[C,4H,CINOS]H": 302.0401; found 302.0399.

11-(Trifluoromethyl)-5,6-dihydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinolin-8(13aH)-one (2h). Pale yellow solid (53 mg, 53%); mp:
78.7—80.4 °C; '"H NMR (CDCl;, 500 MHz) § 2.94—2.99 (m, 1H),
3.12—3.25 (m, 2H), 4.77—4.81 (m, 1H), 6.25 (s, 1H), 7.26—7.29 (m,
1H), 7.32 (t, ] = 4.0 Hz, 2H), 7.38—7.40 (m, 1H), 7.55 (d, ] = 8.0 Hz,
1H), 7.61 (s, 1H), 8.29 (d, ] = 8.5 Hz, 1H). *C{H} NMR (CDCl,,
125 MHz) 6 29.3, 40.0, 60.7, 122.7 (q, ] = 3.5 Hz), 123.2 (q, ] = 271.2
Hz), 123.9 (q, J = 3.75 Hz), 127.3, 127.5, 128.7, 128.8, 129.9, 1315,
131.6, 133.5 (q, ] = 32.4 Hz), 136.1, 138.8, 163.7. HRMS (ESI, m/z)
caled for [C;,H;,NOSF;]H*: 336.0665; found 336.0660.

3-Methoxy-5,6-dihydrobenzo(5,6][1,3]thiazino[2,3-a]isoquinolin-
8(13aH)-one (2i). Yellow oil (77 mg, 85%); '"H NMR (CDCl,, 500
MHz) § 2.86—2.90 (m, 1H), 3.07—3.20 (m, 2H), 3.81 (s, 3H), 4.74—
4.78 (m, 1H), 6.16 (s, 1H), 6.76 (d, ] = 2.0 Hz, 1H), 6.83 (dd, J = 8.5
Hz, 2.5 Hz, 1H), 7.28—7.31 (m, 3H), 7.38 (td, ] = 7.5 Hz, 1.5 Hz, 1H),
8.16 (d, J = 7.5 Hz, 1H). *C{H} NMR (CDCl,, 125 MHz) § 29.6,
39.7, 552, 60.3, 113.2, 113.3, 122.5, 125.9, 126.7, 128.7, 128.9, 130.9,
131.5, 137.6, 137.7, 159.3, 164.7. HRMS (ESI, m/z) calcd for
[C\;H {NO,STH": 298.0896; found 298.0896.

2,3-Dimethoxy-5,6- dlhydrobenzo[5 6][1, 3]thlazmo[2 3-a]-
isoquinolin-8(13aH)-one (2j):"> White solid (53 mg, 54%); 'H NMR
(CDCl,, 500 MHz) § 2.83—2.86 (m, 1H), 3.03—3.10 (m, 1H), 3.15—
3.18 (m, 1H), 3.88 (s, 3H), 3.90 (s, 3H), 4.74—4.78 (m, 1H), 6.15 (s,
1H), 6.72 (s, 1H), 6.86 (s, 1H), 7.29—7.33 (m, 2H), 7.40 (t, J = 7.5
Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H). 3C{H} NMR (CDCl,, 125 MHz)
5 28.7, 39.7, 55.8, 55.9, 60.5, 109.9, 111.1, 122.0, 126.0, 126.7, 128.6,
128.9, 130.9, 131.6, 137.5, 148.1, 148.9, 164.8.

2,3-Dimethoxy-12-methyl-5,6-dihydrobenzo[5,6][1,3]thiazino-
[2,3-aJisoquinolin-8(13aH)-one (2k). Pale yellow solid (87 mg, 85%);
mp: 142.1-143.3 °C; 'H NMR (CDCl;, 500 MHz) § 2.34 (s, 3H),
2.84—2.87 (m, 1H), 3.04—3.10 (m, 1H), 3.15—3.21 (m, 1H), 3.89 (s,
3H), 3.91 (s, 3H), 4.73—4.77 (m, 1H), 6.06 (s, 1H), 6.73 (s, 1H), 6.88
(s, 1H), 7.21 (t, ] = 7.5 Hz, 1H), 7.29 (d, J = 7.0 Hz, 1H), 8.04 (d, ] =
7.5 Hz, 1H). *C{H} NMR (CDCl,, 125 MHz) § 19.9, 28.8, 39.7,
55.9, 56.0, 59.8, 110.1, 111.1, 122.2, 125.3, 128.5, 128.7, 128.9, 132.8,
134.5, 137.4, 148.1, 149.0, 165.2. HRMS (ESI, m/z) caled for
[C1H ,NO;STH": 342.1158; found 342.1158.

5 6 8 13a-Tetrahydrobenzo[5, 6][ 1,3]thiazino[2,3-aJisoquinoline
(4a):"> White solid (68 mg, 90%); '"H NMR (CDCl;, 500 MHz) §
2.84 (d, ] = 12.0 Hz, 2H), 3.16—3.30 (m, 2H), 3.96 (d, ] = 16.5 Hz,
1H), 4.55 (d, ] = 17.0 Hz, 1H), 6.18 (s, 1H), 7.00—7.06 (m, 3H), 7.11
(td, J = 8.5 Hz, 2.0 Hz, 1H), 7.16—7.25 (m, 4H). *C{H} NMR
(CDCl,, 125 MHz) § 28.7, 43.6, 57.7, 67.0, 124.1, 126.0, 126.2, 126.4,
126.5, 127.0, 127.8, 128.0, 129.2, 133.0, 134.7, 134.8.

DOI: 10.1021/acs.joc.6b02943
J. Org. Chem. 2017, 82, 2263—2268


http://dx.doi.org/10.1021/acs.joc.6b02943

The Journal of Organic Chemistry

2,3-Dimethoxy-5,6,8,13a-tetrahydrobenzo(5,6][1,3]thiazino[2,3-
alisoquinoline (4b):"> Pale yellow solid (84 mg, 89%); 'H NMR
(CDCl,, 500 MHz) § 2.81 (d, J = 7.5 Hz, 2H), 3.15 (d, ] = 50.5 Hz,
2H), 3.86 (s, 3H), 3.87 (s, 3H), 4.00 (s, 1H), 4.51 (s, 1H), 6.01 (s,
1H), 6.64 (s, 2H), 6.99—7.09 (m, 4H). 'H NMR (CDCl,, 500 MHz,
—60 °C) § 2.76 (d, ] = 15.5 Hz, 1H), 2.83—2.86 (m, 1H), 3.07—3.20
(m, 2H), 3.88 (s, 3H), 3.89 (s, 3H), 3.98 (d, ] = 16.5 Hz, 1H), 4.53 (d,
] =16.5 Hz, 1H), 6.14 (s, 1H), 6.65 (d, ] = 21.5 Hz, 2H), 6.99 (d, ] =
8.0 Hz, 1H), 7.04—7.09 (m, 2H), 7.13 (t, ] = 7.0 Hz, 1H). BC{H}
NMR (CDCl,, 125 MHz) § 28.4, 43.7, 55.8, 55.9, 57.8, 67.1, 108.9,
111.6, 124.1, 1252, 126.5, 126.6, 126.7, 126.9, 127.9, 134.9, 147.4,
148.6.
3-Methoxy-5,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinoline” (4c):"> Pale yellow solid (81 mg, 90%); 'H NMR
(CDCl,;, 500 MHz) 6 2.85 (s, 2H), 3.15 (s, 2H), 3.80 (s, 3H), 3.98 (s,
1H), 4.51 (s, 1H), 6.14 (s, 1H), 6.71 (s, 1H), 6.76 (dd, ] = 8.5 Hz, 2.5
Hz, 1H), 6.99—7.05 (m, 3H), 7.09—7.11 (m, 2H). '"H NMR (CDCl,,
500 MHz, —60 °C) & 2.84 (d, ] = 15.0 Hz, 2H), 3.19—3.26 (m, 2H),
3.82 (s, 3H), 4.00 (d, ] = 17.0 Hz, 1H), 4.54 (d, ] = 17.0 Hz, 1H), 6.17
(s, 1H), 6.74 (s, 1H), 6.80 (d, ] = 8.5 Hz, 1H), 7.02 (d, ] = 8.0 Hz,
1H), 7.06—7.16 (m, 4H). C{H} NMR (CDCl,,125 MHz) & 28.9,
43.5, 55.1, 57.7, 66.8, 112.2, 113.8, 124.0, 126.4, 126.5, 126.8, 127.2,
127.3, 127.8, 134.5, 134.9, 158.9.
2-Nitro-5,6,8,13a-tetrahydrobenzo(5,6][1,3]thiazino[2,3-a]-
isoquinoline (4d). Pale yellow solid (80 mg, 90%); mp: 169.5—170.9
°C; 'H NMR (CDCl,;, 500 MHz) § 2.86—2.96 (m, 2H), 3.20—3.32
(m, 2H), 3.96 (d, ] = 16.5 Hz, 1H), 4.56 (d, ] = 16.5 Hz, 1H), 6.18 (s,
1H), 7.02 (d, ] = 8.0 Hz, 1H), 7.06 (s, 2H), 7.10~7.13 (m, 1H), 7.33
(d, ] = 8.5 Hz, 1H), 8.15 (s, 1H), 8.08 (d, ] = 8.0 Hz, 1H). *C{H}
NMR (CDCl,, 125 MHz) § 29.1, 43.0, 57.4, 66.0, 121.4, 122.7, 124.7,
125.9, 126.6, 127.2, 128.0, 130.2, 133.6, 136.2, 141.4, 146.2. HRMS
(ESI) m/z calced for [CiH sN,O,STH*: 299.0849, found 299.0849.
10-Fluoro-5,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinoline (4e). Pale yellow solid (50 mg, 62%); mp: 138.5—139.8
°C; '"H NMR (CDCl;, 500 MHz) § 2.79—-2.82 (m, 2H), 3.12—3.23
(m, 2H), 3.89 (d, ] = 16.5 Hz, 1H), 4.48 (d, ] = 17.0 Hz, 1H), 6.09 (s,
1H), 6.77—6.84 (m, 2H), 6.91-6.94 (m, 1H), 7.12—7.18 (m, 3H),
7.19=7.23 (m, 1H). C{H} NMR (CDCl,, 125 MHz) § 28.7, 43.6,
57.6, 66.9, 114.5 (q, J = 21.5 Hz), 126.1, 1262, 127.6, 127.7, 127.9,
128.0 (d, J = 5.75 Hz), 129.2, 129.5 (d, ] = 2.8 Hz), 132.9, 134.5, 159.7
(d, J = 242.75 Hz). HRMS (ESI, m/z) caled for [CsH,,NSF]H":
272.0904; found 272.0905.
5,6,8,13a-Tetrahydrobenzo[5,6][1,3]thiazino[2,3-alisoquinoline-
11-carboxylate Ethyl (4f). White solid (64 mg, 66%); mp: 120.5—
121.8 °C; '"H NMR (CDCl,;, 500 MHz) § 1.36 (t, ] = 7.0 Hz, 3H),
2.79—2.81 (m, 2H), 3.16—3.19 (m, 2H), 3.97 (d, J = 17.0 Hz, 1H),
433 (q,J = 7.0 Hz, 2H), 4.52 (d, J = 16.5 Hz, 1H), 6.15 (s, 1H), 7.09
(d, ] = 7.5 Hz, 1H), 7.13—7.24 (m, 4H), 7.65—7.76 (m, 2H). “C{H}
NMR (CDCl,, 125 MHz) § 14.2, 28.7, 43.7, 57.6, 60.9, 67.2, 124.9,
126.1, 126.2, 127.7, 127.8, 127.9, 129.1, 129.2, 131.3, 132.9, 134.4,
135.5, 166.0. HRMS (ESI, m/z) caled for [C;yH;(NO,S]H":
326.1209; found 326.1209.
12-Methyl-5,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinoline (4g). Yellow solid (50 mg, 62%); mp: 140.3—141.8 °C;
'H NMR (CDCl,, 500 MHz) & 2.20 (d, ] = 6.0 Hz, 3H), 2.82 (d, ] =
15 Hz, 2H), 3.15—3.26 (m, 2H), 3.95 (d, ] = 16.5 Hz, 1H), 4.54 (d, ] =
16.5 Hz, 1H), 6.13 (s, 1H), 6.90—6.95 (m, 2H), 7.01 (t, ] = 5.5 Hz,
1H), 7.17-7.23 (m, 4H). BC{H} NMR (CDCl,;, 125 MHz) § 19.1,
28.7, 43.5, 58.1, 67.0, 123.0, 125.3, 125.9, 126.0, 126.2, 127.9, 128.2,
129.2, 133.1, 133.9, 1342, 1350. HRMS (ESI) m/z caled for
[C\,H {NSTH"* 268.1155, found 268.1155.
11-Methoxy-5,6,8,13a-tetrahydrobenzo[5,6][1,3]thiazino[2,3-a]-
isoquinoline (4h):"* Yellow solid (50 mg, 60%); 'H NMR (CDCl,,
500 MHz) 6 2.81 (s, 2H), 3.20 (d, ] = 19.5 Hz, 2H), 3.75 (s, 3H), 3.90
(d, J = 13.0 Hz, 1H), 448 (d, J = 15.0 Hz, 1H), 6.15 (s, 1H), 6.55 (d, J
=2.0 Hz, 1H), 6.60 (dd, ] = 8.5 Hz, 2.5 Hz, 1H), 6.95 (d, ] = 8.5 Hz,
1H), 7.14—7.24 (m, 4H). ®C{H} NMR (CDCl,, 125 MHz) § 28.7,
43.5, 55.2, 57.2, 67.1, 110.8, 110.9, 118.4, 126.0, 126.2, 127.8, 128.8,
129.2, 133.0, 134.7, 135.8, 158.2.
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